4,851 research outputs found

    A neural model for the visual tuning properties of action-selective neurons

    Get PDF
    SUMMARY: The recognition of actions of conspecifics is crucial for survival and social interaction. Most current models on the recognition of transitive (goal-directed) actions rely on the hypothesized role of internal motor simulations for action recognition. However, these models do not specify how visual information can be processed by cortical mechanisms in order to be compared with such motor representations. This raises the question how such visual processing might be accomplished, and in how far motor processing is critical in order to account for the visual properties of action-selective neurons.
We present a neural model for the visual processing of transient actions that is consistent with physiological data and that accomplishes recognition of grasping actions from real video stimuli. Shape recognition is accomplished by a view-dependent hierarchical neural architecture that retains some coarse position information on the highest level that can be exploited by subsequent stages. Additionally, simple recurrent neural circuits integrate effector information over time and realize selectivity for temporal sequences. A novel mechanism combines information about the shape and position of object and effector in an object-centered frame of reference. Action-selective model neurons defined in such a relative reference frame are tuned to learned associations between object and effector shapes, as well as their relative position and motion. 
We demonstrate that this model reproduces a variety of electrophysiological findings on the visual properties of action-selective neurons in the superior temporal sulcus, and of mirror neurons in area F5. Specifically, the model accounts for the fact that a majority of mirror neurons in area F5 show view dependence. The model predicts a number of electrophysiological results, which partially could be confirmed in recent experiments.
We conclude that the tuning of action-selective neurons given visual stimuli can be accounted for by well-established, predominantly visual neural processes rather than internal motor simulations.

METHODS: The shape recognition relies on a hierarchy of feature detectors of increasing complexity and invariance [1]. The mid-level features are learned from sequences of gray-level images depicting segmented views of hand and object shapes. The highest hierarchy level consists of detector populations for complete shapes with a coarse spatial resolution of approximately 3.7°. Additionally, effector shapes are integrated over time by asymmetric lateral connections between shape detectors using a neural field approach [2]. These model neurons thus encode actions such as hand opening or closing for particular grip types. 
We exploit gain field mechanism in order to implement the central coordinate transformation of the shape representations to an object-centered reference frame [3]. Typical effector-object-interactions correspond to activity regions in such a relative reference frame and are learned from training examples. Similarly, simple motion-energy detectors are applied in the object-centered reference frame and encode relative motion. The properties of transitive action neurons are modeled as a multiplicative combination of relative shape and motion detectors.

RESULTS: The model performance was tested on a set of 160 unsegmented sequences of hand grasping or placing actions performed on objects of different sizes, using different grip types and views. Hand actions and objects could be reliably recognized despite their mutual occlusions. Detectors on the highest level showed correct action tuning in more than 95% of the examples and generalized to untrained views. 
Furthermore, the model replicates a number of electrophysiological as well as imaging experiments on action-selective neurons, such as their particular selectivity for transitive actions compared to mimicked actions, the invariance to stimulus position, and their view-dependence. In particular, using the same stimulus set the model nicely fits neural data from a recent electrophysiological experiment that confirmed sequence selectivity in mirror neurons in area F5, as was predicted before by the model.

References
[1] Serre, T. et al. (2007): IEEE Pattern Anal. Mach. Int. 29, 411-426.
[2] Giese, A.M. and Poggio, T. (2003): Nat. Rev. Neurosci. 4, 179-192.
[3] Deneve, S. and Pouget, A. (2003). Neuron 37: 347-359.
&#xa

    Technology and manufacturing in the seventh district

    Get PDF
    Technology ; Federal Reserve District, 7th ; Manufactures - North Central states

    Ortho-Fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals

    Get PDF
    Photoresponsive liquid crystals (LCs) whose alignment can be controlled with UV-Visible light are appealing for a range of photonic applications. From the perspective of exploring the interplay between the light response and the self-assembly of the molecular components, supramolecular liquid crystals are of particular interest. They allow elaborating the structure-property relationships that govern the optical performance of LC materials by subtle variation of the chemical structures of the building blocks. Herein we present a supramolecular system comprising azophenols and stilbazoles as hydrogen-bond donors and acceptors, respectively, and show that ortho-fluorination of the azophenol dramatically increases the thermal stability of the LC phases, an important characteristics in their further utilization in photonics. The systems exhibit fast photoinduced order-disorder transitions, and rapid recovery of the liquid-crystalline state once the light irradiation is ceased, due to the photochemical properties of azophenols

    Supramolecular modification of ABC triblock terpolymers in confinement assembly

    Get PDF
    The self-assembly of AB diblock copolymers in three-dimensional (3D) soft confinement of nanoemulsions has recently become an attractive bottom up route to prepare colloids with controlled inner morphologies. In that regard, ABC triblock terpolymers show a more complex morphological behavior and could thus give access to extensive libraries of multicompartment microparticles. However, knowledge about their self-assembly in confinement is very limited thus far. Here, we investigated the confinement assembly of polystyrene-block-poly(4-vinylpyridine)-block-poly(tert-butyl methacrylate) (PS-b-P4VP-b-PT or SVT) triblock terpolymers in nanoemulsion droplets. Depending on the block weight fractions, we found spherical microparticles with concentric lamella–sphere (ls) morphology, i.e., PS/PT lamella intercalated with P4VP spheres, or unusual conic microparticles with concentric lamella–cylinder (lc) morphology. We further described how these morphologies can be modified through supramolecular additives, such as hydrogen bond (HB) and halogen bond (XB) donors. We bound donors to the 4VP units and analyzed changes in the morphology depending on the binding strength and the length of the alkyl tail. The interaction with the weaker donors resulted in an increase in volume of the P4VP domains, which depends upon the molar fraction of the added donor. For donors with a high tendency of intermolecular packing, a visible change in the morphology was observed. This ultimately caused a shape change in the microparticle. Knowledge about how to control inner morphologies of multicompartment microparticles could lead to novel carbon supports for catalysis, nanoparticles with unprecedented topologies, and potentially, reversible shape changes by light actuation

    Factors That Influence Parent Communication Decisions For Their Deaf Or Hard Of Hearing Child In Illinois

    Get PDF
    The development of language in a deaf or hard of hearing child is dependent upon early and effective communication access (Marschark, 2018; Marschark & Hauser, 2012; Pittman, Sass-Lehrer, & Abrams, 2016; Scott & Dostal, 2019; Scott & Henner, 2020). For many parents of deaf and hard of hearing children, the most common early decisions that are made are related to communication and supporting language development, which is recognized by many in the field as a prime factor in early language acquisition (Decker, Vallotton, & Johnson, 2012; Sass-Lehrer, 2018). However, there are a lack of effective strategies for sharing information on specific communication approaches with families across the wide span of opinions regarding how deaf and hard of hearing children communicate. The focus of this dissertation study examined the parent perspective of their experience in gathering information about communication approaches for their child and how that ties into the recommended guidelines related to informed choice, decision-making, and information sharing within the early intervention process. Surveys and interviews were used The major findings of this study indicate that parents in Illinois receive inconsistent information regarding communication approaches; primary sources of information for parents in Illinois appear to be early intervention professionals and the parents themselves; access to opportunities in addition to satisfaction/dissatisfaction with the information emerged as top influencers in the process of making decisions; and the idea of a reference chart or communication matrix was deemed a potential desirable and beneficial resource. The potential implications for enhancing early intervention practices include standardization of practices to enhance informed choice and support decision-making

    Experimental Investigation of the Influence of Molecular Weight on Mixing and Penetration in Supersonic Dissimilar Gaseous Injection into a Supersonic Cross-Flow

    Get PDF
    In pursuit of a more efficient and effective fuel-air mixing for a SCRAMjet combustor, this study investigated relative near field effects of molecular weight on mixing and penetration of different gaseous injection into a supersonic (M=2.9) cross flow. Helium and argon gas were chosen as injectants because of the large differences in molecular weights. Also, mixing enhancement was observed by injecting the traverse gas jet parallel to the compression face of a ramp. Color schlieren photography was used to identify the shock structures and interactions in the flow field. Measurements of mean flow properties were used to establish the jet plume size, penetration, and concentration and to quantify the total pressure loss. Results indicate greater mixing and plume expansion can be achieved with helium compared to argon

    Double Bragg diffraction: A tool for atom optics

    Full text link
    The use of retro-reflection in light-pulse atom interferometry under microgravity conditions naturally leads to a double-diffraction scheme. The two pairs of counterpropagating beams induce simultaneously transitions with opposite momentum transfer that, when acting on atoms initially at rest, give rise to symmetric interferometer configurations where the total momentum transfer is automatically doubled and where a number of noise sources and systematic effects cancel out. Here we extend earlier implementations for Raman transitions to the case of Bragg diffraction. In contrast with the single-diffraction case, the existence of additional off-resonant transitions between resonantly connected states precludes the use of the adiabatic elimination technique. Nevertheless, we have been able to obtain analytic results even beyond the deep Bragg regime by employing the so-called "method of averaging," which can be applied to more general situations of this kind. Our results have been validated by comparison to numerical solutions of the basic equations describing the double-diffraction process.Comment: 26 pages, 20 figures; minor changes to match the published versio

    It was (not) me: Causal Inference of Agency in goal-directed actions

    Get PDF
    Summary: 
The perception of one’s own actions depends on both sensory information and predictions derived from internal forward models [1]. The integration of these information sources depends critically on whether perceptual consequences are associated with one’s own action (sense of agency) or with changes in the external world that are not related to the action. The perceived effects of actions should thus critically depend on the consistency between the predicted and the actual sensory consequences of actions. To test this idea, we used a virtual-reality setup to manipulate the consistency between pointing movements and their visual consequences and investigated the influence of this manipulation on self-action perception. We then asked whether a Bayesian causal inference model, which assumes a latent agency variable controlling the attributed influence of the own action on perceptual consequences [2,3], would account for the empirical data: if the percept was attributed to the own action, visual and internal information should fuse in a Bayesian optimal manner, while this should not be the case if the visual stimulus was attributed to external influences. The model correctly fits the data, showing that small deviations between predicted and actual sensory information were still attributed to one’s own action, while this was not the case for large deviations when subjects relied more on internal information. We discuss the performance of this causal inference model in comparison to alternative biologically feasible statistical models applying methods for Bayesian model comparison.

Experiment: 
Participants were seated in front of a horizontal board on which their right hand was placed with the index finger on a haptic marker, representing the starting point for each trial. Participants were instructed to execute straight, fast (quasi-ballistic) pointing movements of fixed amplitude, but without an explicit visual target. The hand was obstructed from the view of the participants, and visual feedback about the peripheral part of the movement was provided by a cursor. Feedback was either veridical or rotated against the true direction of the hand movement by predefined angles. After each trial participants were asked to report the subjectively experienced direction of the executed hand movement by placing a mouse-cursor into that direction.

Model: 
We compared two probabilistic models: Both include a binary random gating variable (agency) that models the sense of ‘agency’; that is the belief that the visual feedback is influenced by the subject’s motor action. The first model assumes that both the visual feedback xv and the internal motor state estimate xe are directly caused by the (unobserved) real motor state xt (Fig. 1). The second model assumes instead that the expected visual feedback depends on the perceived direction of the own motor action xe (Fig. 2). 
Results: Both models are in good agreement with the data. Fig. A shows the model fit for Model 1 superpositioned to the data from a single subject. Fig. B shows the belief that the visual stimulus was influenced by the own action, which decreases for large deviations between predicted and real visual feedback. Bayesian model comparison shows a better fit for model 1.
Citations
[1] Wolpert D.M, Ghahramani, Z, Jordan, M. (1995) Science, 269, 1880-1882.
[2] Körding KP, Beierholm E, Ma WJ, Quartz S, Tenenbaum JB, et al (2007) PLoS ONE 2(9): e943.
[3] Shams, L., Beierholm, U. (2010) TiCS, 14: 425-432.
Acknowledgements
This work was supported by the BCCN Tübingen (FKZ: 01GQ1002), the CIN Tübingen, the European Union (FP7-ICT-215866 project SEARISE), the DFG and the Hermann and Lilly Schilling Foundation

    Hydrogen-bonded liquid crystals with broad-range blue phases

    Get PDF
    We report a modular supramolecular approach for the investigation of chirality induction in hydrogen-bonded liquid crystals. An exceptionally broad blue phase with a temperature range of 25 °C was found, which enabled its structural investigation by solid state 19F-NMR studies and allowed us to report order parameters of the blue phase I for the first time

    Public Perceptions of the Midwest\u27s Pavements - Iowa - Executive Summary

    Get PDF
    This report summarizes Iowa results of a five year, Pooled Fund study involving the Wisconsin, Iowa, and Minnesota DOTs designed to 1) assess the public\u27s perceptions of the departments’ pavement improvement strategies and 2) to develop customer-based thresholds of satisfaction with pavements on rural two lane highways in each state as related to the Departments’ physical indices, such as pavement ride and condition. The primary objective was to seek systematic customer input to improve the Departments’ pavement improvement policies by 1) determining how drivers perceive the departments’ pavements in terms of comfort and convenience but also in terms of other tradeoffs departments had not previously considered, 2) determining relationships between perceptions and measured pavement condition thresholds (including a general level of tolerance of winter ride conditions in two of the states), and 3) identifying important attributes and issues that may not have been considered in the past. Secondary objectives were 1) to provide a tool for systematic customer input in the future and 2) provide information which can help structure public information programs. A University of Wisconsin-Extension survey lab conducted the surveys under the direction of a multi-disciplinary team from Marquette University. Approximately 4500 drivers in the three states participated in the three phases of the project. Researchers conducted six focus groups in each state, approximately 400 statewide telephone interviews in each state and 700-800 targeted telephone interviews in each state. Approximately 400 winter ride interviews were conducted in Wisconsin and Minnesota. A summary of the method for each survey is included. In Phase I, focus groups were conducted with drivers to get an initial indication of what the driving public believes in regards to pavements and to frame issues for inclusion in the more representative state-wide surveys of drivers conducted in Phase II of the project. Phase II interviews gathered information about improvement policy trade-off issues and about preliminary thresholds of improvement in terms of physical pavement indices. In Phase III, a two step recruitment and post-drive interview procedure yielded thresholds of ride and condition index summarized for each state. Results show that, in general, the driving public wants longer lasting pavements and are willing to pay for them. They want to minimize construction delay, improve entire sections of highway at one time but they dislike detours, and prefer construction under traffic even if it stretches out construction time. Satisfaction with pavements does not correlate directly to a high degree with physical pavement indices, but was found instead to be a complex, multi-faceted phenomenon. A psychological model (after Fishbein/Ajzen) was applied to explain satisfaction to a respectable degree (R2 of .7) for the social sciences. Results also indicate a high degree of trust in the three DOTs which is enhanced when the public is asked for input on specific highway segments. Conclusions and recommendations include a three-step methodology for other state studies. Physical data thresholds based on both public satisfaction and the agreement to improve are presented for each state\u27s physical pavement indices (ride and condition). Recommendations for changes to the quality ranges of the physical indices where appropriate are also made
    • …
    corecore